

Identified Particle Ratios at large p_T in Au+Au collisions at $s_{NN} = 200 \text{ GeV}$

Matthew A. C. Lamont for the STAR Collaboration

- Talk Outline -

Physics Motivation

Current Models

Identified Particle Spectra

B/B and B/M ratios

Strange Particle Correlations

Motivation: Particle production vs p_T

What do we think we know?

Motivation: Particle production vs p_T

What has the data already shown us at intermediate p_{τ} ?

Motivation: Particle production vs p_T

What has the data already shown us at intermediate p_{τ} ?

Current theoretical models

Soft + Quench Model

M. Gyulassy et. al., Phys. Rev. Lett. 86 (2001) 2537

- Two component model, soft production (hydro) at low p_T, quenching of pQCD jets via gluon radiation at higher p_T.
 - Baryon junctions incorporated to explain large baryon yield at intermediate p_T.
- Recombination

R. J. Fries et. al., Phys. Rev. C 68 (2003) 044902

- Model assumes the recombination of two and three low p_T partons to form hadrons from an exponential parton p_T spectrum. High p_T spectrum described by fragmentation once parton p_T spectrum can be described by a power law.
 - Requires a high phase space density of partons for method to work.
- Coalescence

V. Greco et. al., Phys. Rev. C 68 (2003) 034904

Same as the recombination picture with the added assumption that thermal
 'QGP' partons can coalesce with co-moving 'pQCD' partons from a mini-jet.

Identified particle spectra : p, \bar{p} , $K^{-,+}$, $\Gamma^{-,+}$, K^0_s and Γ

\overline{B}/B ratios vs Transverse Momentum (p_T)

This pQCD calculation fails: uncertainties in PDFs and fragmentation functions?

Both the 'Soft+Quench' and recombination model predictions are consistent with the data.

Soft+Quench (130 GeV): Nucl. Phys. A715 779-782 (2003)

Recombination (200 GeV): Phys. Rev. C68 044902 (2003)

Note the different trend in the \overline{p}/p ratio from that reported in Nantes. Experimental effects have been better modelled (mainly space charge distortions).

p/\pi ratios, data and theory

Note that \overline{p} data is not corrected for feed-down from weak decays $\overline{p}/\overline{p}$ ratio will decrease.

Hydro: Phys. Rev. C67, 044903 (2003)

S+Q: 200 GeV data - private communication

S+Q: 130 GeV data - Phys. Rev. C65, 041902

p/□ ratios, data and theory

p/□ ratios, data and theory

]/K⁰_s ratios vs collision centrality

- \square/K_s^0 ratio increases with increasing centrality
 - peaks in the intermediate p_T region.
 - turns over and appears to tend to the same value for all centralities for $p_T \sim 5-6$ GeV/c.
 - Therefore p_T range of baryon excess is limited to < 5-6
 GeV/c.
 - Not yet down to level in pp data

For p+p data, refer to poster by M. Heinz and J. Adams

 \square not corrected for feed-down from weak decays - estimated to be a 10% effect and \sim independent of p_T .

\prod/K_s^0 - comparison with models

- S+Q: magnitude
 turnover
 centrality
 ✓
- Reco: magnitude

 turnover
 low p_T

 **
- Coal: magnitude ★ turnover ★ low p_T

Require centrality dependent prediction from Recombination and Coalescence models.

Reco: Phys. Rev. C68 044902 (2003)	tion
Coal: Phys. Rev. C 68 034904 (2003)	1902

Another view of the same effect?

.... R_{cp}

Transverse Momentum p_T (GeV/c)

- Suppression of mesons different to baryons not mass dependent effect.
- R_{cp} of baryons and mesons separate at $p_T \sim 2$ GeV/c and come together at $p_T \sim 5-6$ GeV/c.

See poster by P. Sorensen

Another view of the same effect?

.... R_{cp}

Transverse Momentum p_T (GeV/c)

- Suppression of mesons different to baryons not mass dependent effect.
- R_{cp} of baryons and mesons separate at $p_T \sim 2 \text{ GeV/c}$ and come together at $p_T \sim 5-6 \text{ GeV/c}$.

Another view of the same effect?

.... R_{cp}

Transverse Momentum p_T (GeV/c)

- Suppression of mesons different to baryons not mass dependent effect.
- R_{cp} of baryons and mesons separate at p_T ~ 2 GeV/c and come together at p_T ~ 5-6 GeV/c.

See poster by P. Sorensen

Identified Particle Correlations

• We have seen previously the disappearance of back-to-back jet correlations in central Au+Au, with charged particles.

Back to back jet disappearance for charged trigger particles (Phys. Rev. Lett. 91 072304 (2003))

- Measuring correlations with identified particles could give us insight on possible different production mechanisms for baryons and mesons.
- Correlation appears stronger for \square compared to \square , though in both cases, there is an absence of a 'back-to-back' partner correlation.

trig: □, assoc : charged hadron

Identified Particle Correlations

• We have seen previously the disappearance of back-to-back jet correlations in central Au+Au, with charged particles.

Back to back jet disappearance for charged trigger particles (Phys. Rev. Lett. 91 072304 (2003))

- Measuring correlations with identified particles could give us insight on possible different production mechanisms for baryons and mesons.
- Correlation appears stronger for \square compared to \square , though in both cases, there is an absence of a 'back-to-back' partner correlation.

See poster by Y. Guo

Quantifying the Correlation Strength

$$N_{back} = \frac{\prod N_{pairs}(\left| \prod \right| > 2.49)}{N_{trigger}}$$

- Correlation difference defined as : N_{same} N_{back}
- Suppression of \square as a function of p_T is slightly different from the $\overline{\square}$, $K^0{}_s$ and primaries.
- Under investigation whether this is an experimental effect or whether there is indeed sensitivity to quenching or production mechanism effects

Quantifying the Correlation Strength

$$N_{back} = \frac{\prod N_{pairs}(\left| \prod \right| > 2.49)}{N_{trigger}}$$

- Correlation difference defined as : N_{same} N_{back}
- Suppression of \square as a function of p_T is slightly different from the $\overline{\square}$, K^0_s and primaries.
- Under investigation whether this is an experimental effect or whether there is indeed sensitivity to quenching or production mechanism effects

See poster by Y. Guo

Summary

- \overline{B}/B ratios are independent of p_T .
 - pQCD calculation fails : uncertainties in PDFs and fragmentation functions ?
- $\overline{p}/\square^\square$ ratio increases with p_T up to 3 GeV/c.
- \Box/K_s^0 ratio increases smoothly with centrality, turns over at $p_T \sim 3$ GeV/c.
 - baryon excess over mesons is limited in p_T to < 5-6 GeV/c.
 - A+A value still above p+p value.
- The R_{cp} measurement exhibits differences between baryons and mesons not just a mass effect.
- Strange correlations hint at a flavour dependence.
 - correlations with \square triggers possibly enhanced over those with \square and K^0_s triggers.

Backup Slides

13/01/04

STAR pp vs UA1 pp

- Ratio very different in two systems
- Different production mechanisms or just differences in experiments?

	STAR	UA1
Ratio Plotted	$\square/\mathrm{K}^0_{\mathrm{s}}$	□+ <u></u> □/2K ⁰ _s
Colliding System	p+p	p+p
Energy	200 GeV	630 GeV
Coverage	y < 1	

STAR RICH Geometry

 $|\Box| < 0.3$ and $|\Box| = 20^{\Box}$

- 1) Charged particle through radiator
- 2) MIP and photons detection

Integral method and Fitting

Cherenkov angle distribution in momentum bins

Comparison of Spectra with PHENIX

Current theoretical models

Softie Querch Model V. Gr

V. Greco et. al., Phys. Rev. C 68 (2003) 034904

- Reconsist paire of the desired spire of the prince of th

